Giải bài 124, 125, 126, 127 trang 95, 96 Sách bài tập Toán 8 tập 1

Rate this post

Câu 124 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho đoạn thẳng AB. Kẻ tia Ax bất kì, lấy các điểm C, D, E sao cho AC = CD = DE. Qua C và D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra ba phần bằng nhau.

Giải:

Gọi giao điểm của các đường thẳng kẻ từ C và D song song với BE cắt AB tại M và N.

Ta có: AC = CD = DE (gt)

CM // DN // BE

Theo tính chất đường thẳng song song cách đều ta có: AM = MN = NB.

Câu 125 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho góc vuông xOy, điểm A trên tia Oy. Điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào ?

Giải:

Vì điểm C đối xứng với điểm A qua điểm B ⇒ BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB:

(widehat {AOB} = widehat {CHB} = {90^0})

BA = BC (chứng minh trên)

(widehat {ABO} = widehat {CBH}) (đối đỉnh)

Do đó: ∆ AOB = ∆ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO

A, O cố định ⇒ OA không đổi nên CH không đổi.

C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng OA.

Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Km // Ox, cách Ox một khoảng không đổi bằng OA.

Xem thêm:  Hướng dẫn Giải bài 43 44 45 46 trang 20 21 sgk Toán 8 tập 1

Câu 126 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ?

Giải:

Kẻ AH ⊥ BC, IK ⊥ BC

⇒ AH // IK

Trong tam giác AHM ta có:

⇒ AI = IM (gt)

IK // AH (chứng minh trên)

Suy ra: IK là đường trung bình của ∆ AHM

⇒ IK = ({1 over 2})AH

∆ ABC cố định nên AH không thay đổi ⇒ IK = ({1 over 2})AH không đổi.

I thay đổi cách BC một khoảng bằng ({{AH} over 2}) không đổi nên I nằm trên đường thẳng song song với BC, cách BC một khoảng bằng({{AH} over 2}).

Khi M trùng với điểm B thì I trùng với P là trung điểm của AB.

Khi M trùng với điểm C thì I trùng với Q là trung điểm của AC.

Vậy khi M chuyển động trên cạnh BC của ∆ ABC thì trung điểm I của AM chuyển động trên đường trung bình PQ của ∆ ABC.

Câu 127 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC.

a. So sánh các độ dài AM, DE.

b. Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất.

Giải:

a. Xét tứ giác ADME ta có:

(widehat A = {90^0}) (gt)

MD ⊥ AB (gt)

( Rightarrow widehat {MDA} = {90^0})

ME ⊥ AC (gt)

Xem thêm:  Vở bài tập Toán lớp 4 Tập 2 trang 33 Bài 112: Luyện tập chung

( Rightarrow widehat {MEA} = {90^0})

Suy ra: Tứ giác ADME là hình chữ nhật (vì có ba góc vuông)

⇒ AM = DE (tính chất hình chữ nhật)

b. Ta có: AH ⊥ BC nên AM ≥ AH. Dấu “=” xảy ra khi M trùng với H.

mà DE = AM (chứng minh trên)

Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường vuông góc kẻ từ A đến BC.

Giaibaitap.me