Giải bài 4, 5, 6, 7 trang 25 Sách bài tập Toán 8 tập 1

Rate this post

Câu 4 trang 25 Sách bài tập (SBT) Toán 8 tập 1

Dùng tính chất cơ bản của phân thức, hãy điền một đa thức thích hợp vào các chỗ trống trong mỗi đẳng thức sau:

a. ({{x – {x^2}} over {5{x^2} – 5}} = {x over {…}})

b. ({{{x^2} + 8} over {2x – 1}} = {{3{x^3} + 24x} over {…}})

c. ({{…} over {x – y}} = {{3{x^2} – 3xy} over {3{{left( {y – x} right)}^2}}})

d. ({{ – {x^2} + 2xy – {y^2}} over {x + y}} = {{…} over {{y^2} – {x^2}}})

Giải:

a. Từ tử thức hai vế chứng tỏ tử thức vế trái đã chia cho 1 – x nên mẫu thức phải chia cho 1 – x mà (5{x^2} – 5 = 5left( {x – 1} right)left( {x + 1} right) = – 5left( {1 – x} right)left( {x + 1} right))

Vậy đa thức cần điền vào chỗ trống là ( – 5left( {x + 1} right))

Ta có : ({{x – {x^2}} over {5{x^2} – 5}} = {x over { – 5left( {x + 1} right)}}{e^{itheta }})

b. ({{{x^2} + 8} over {2x – 1}} = {{3{x^3} + 24x} over {…}}) ( Rightarrow {{{x^2} + 8} over {2x – 1}} = {{3xleft( {{x^2} + 8} right)} over {…}})

Từ tử thức hai vế chứng tỏ tử thức vế trái được nhân với 3x nên mẫu thức cũng nhân với 3x. Vậy đa thức cần điền vào chỗ trống là

(3xleft( {2x – 1} right) = 6{x^2} – 3x)

Ta có: ({{{x^2} + 8} over {2x – 1}} = {{3{x^3} + 24x} over {6{x^2} – 3x}})

c. ({{…} over {x – y}} = {{3{x^2} – 3xy} over {3{{left( {y – x} right)}^2}}}) ( Rightarrow {{…} over {x – y}} = {{3{x^2} – 3xy} over {3{{left( {x – y} right)}^2}}})

Xem thêm:  Giải bài 4.1, 4.2, 4.3 trang 162, 163 Sách bài tập Toán 9 tập 2

Từ mẫu thức hai vế chứng tỏ mẫu thức vế trái được nhân với (3left( {x – y} right)) nên tử cũng được nhân với (3left( {x – y} right)) mà (3{x^2} – 3xy = 3xleft( {x – y} right))

Vậy đa thức cần điển vào chỗ trống là (x)

Ta có: ({x over {x – y}} = {{3{x^2} – 3xy} over {3{{left( {y – x} right)}^2}}})

d. ({{ – {x^2} + 2xy – {y^2}} over {x + y}} = {{…} over {{y^2} – {x^2}}}) ( Rightarrow {{ – {x^2} + 2xy – {y^2}} over {x + y}} = {{…} over {left( {y – x} right)left( {x + y} right)}})

Từ mẫu thức hai vế chứng tỏ mẫu thức vế trái nhân thêm y – x nên tử phải nhân với y – x, đa thức cần điền (left( { – {x^2} + 2xy – {y^2}} right)left( {y – x} right))

( = – {x^2}y + {x^3} + 2x{y^2} – 2{x^2}y – {y^3} + x{y^2} = {x^3} – 3{x^2}y + 3x{y^2} – {y^3} = {left( {x – y} right)^3})

Ta có: ({{ – {x^2} + 2xy – {y^2}} over {x + y}} = {{{{left( {x – y} right)}^3}} over {{y^2} – {x^2}}})

Câu 5 trang 25 Sách bài tập (SBT) Toán 8 tập 1

Biến đổi mỗi phân thức sau thành một phân thức bằng nó và có tử thức là đa thức A cho trước :

a. ({{4x + 3} over {{x^2} – 5}},A = 12{x^2} + 9x)

b. ({{8{x^2} – 8x + 2} over {left( {4x – 2} right)left( {15 – x} right)}},A = 1 – 2x)

Giải:

a. A ( = 12{x^2} + 9x = 3xleft( {4x + 3} right))

( Rightarrow {{4x + 3} over {{x^2} – 5}} = {{left( {4x + 3} right).3x} over {left( {{x^2} – 5} right).3x}} = {{12{x^2} + 9x} over {3{x^3} – 15x}})

Xem thêm:  Toán lớp 4 trang 167, 168 Ôn tập các phép tính với phân số

b. (A = 1 – 2x Rightarrow 8{x^2} – 8x + 2:1 – 2x = 2 – 4x)

({{8{x^2} – 8x + 2} over {left( {4x – 2} right)left( {15 – x} right)}} = {{left( {8{x^2} – 8x + 2} right):left( {2 – 4x} right)} over {left( {4x – 2} right)left( {15 – x} right):left( {2 – 4x} right)}} = {{1 – 2x} over {x – 15}})

Câu 6 trang 25 Sách bài tập (SBT) Toán 8 tập 1

Dùng tính chất cơ bản của phân thức để biến đổi mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng tử thức :

a. ({3 over {x + 2}})và ({{x – 1} over 5})

b. ({{x + 5} over {4x}})và ({{{x^2} – 25} over {2x + 3}})

Giải:

a. ({3 over {x + 2}} = {{3left( {x – 1} right)} over {left( {x + 2} right)left( {x – 1} right)}} = {{3x – 3} over {{x^2} + x – 2}})

({{x – 1} over {5x}} = {{3left( {x – 1} right)} over {5x.3}} = {{3x – 3} over {15x}})

b. ({{x + 5} over {4x}})( = {{left( {x + 5} right)left( {x – 5} right)} over {4xleft( {x – 5} right)}} = {{{x^2} – 25} over {4{x^2} – 20x}}) và ({{{x^2} – 25} over {2x + 3}})

Câu 7 trang 25 Sách bài tập (SBT) Toán 8 tập 1

Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. ({{3x} over {x – 5}})và ({{7x + 2} over {5 – x}})

b. ({{4x} over {x + 1}})và ({{3x} over {x – 1}})

Xem thêm:  Toán lớp 5 trang 166, 167 Ôn tập về tính chu vi diện tích một số hình

c. ({2 over {{x^2} + 8x + 16}})và ({{x – 4} over {2x + 8}})

d. ({{2x} over {left( {x + 1} right)left( {x – 3} right)}})và ({{x + 3} over {left( {x + 1} right)left( {x – 2} right)}})

Giải:

a. ({{3x} over {x – 5}} = {{ – left( {3x} right)} over { – left( {x – 5} right)}} = {{ – 3x} over {5 – x}})và ({{7x + 2} over {5 – x}})

b. ({{4x} over {x + 1}} = {{4xleft( {x – 1} right)} over {left( {x + 1} right)left( {x – 1} right)}} = {{4{x^2} – 4x} over {{x^2} – 1}})

({{3x} over {x – 1}}) (= {{3xleft( {x + 1} right)} over {left( {x – 1} right)left( {x + 1} right)}} = {{3{x^2} + 3x} over {{x^2} – 1}})

c. ({2 over {{x^2} + 8x + 16}} = {4 over {2{{left( {x + 4} right)}^2}}})

({{x – 4} over {2x + 8}} = {{x – 4} over {2left( {x + 4} right)}} = {{left( {x – 4} right)left( {x + 4} right)} over {2left( {x + 4} right)left( {x + 4} right)}} = {{{x^2} – 16} over {2{{left( {x + 4} right)}^2}}})

d. ({{2x} over {left( {x + 1} right)left( {x – 3} right)}} = {{2xleft( {x – 2} right)} over {left( {x + 1} right)left( {x – 3} right)left( {x – 2} right)}} = {{2{x^2} – 4x} over {left( {x + 1} right)left( {x – 2} right)left( {x – 3} right)}})

({{x + 3} over {left( {x + 1} right)left( {x – 2} right)}} = {{left( {x + 3} right)left( {x – 3} right)} over {left( {x + 1} right)left( {x – 2} right)left( {x – 3} right)}} = {{{x^2} – 9} over {left( {x + 1} right)left( {x – 2} right)left( {x – 3} right)}})

Giaibaitap.me