Chào mừng bạn đến với xaydung4.edu.vn trong bài viết về Giai bai 21 22 23 24 25 trang 12 sgk toan 8 tap 1 chúng tôi sẽ chia sẻ kinh nghiệm chuyên sâu của mình cung cấp kiến thức chuyên sâu dành cho bạn.
Đáp án và hướng dẫn giải chi tiết bài 19,20,21,22,23,24,25 trang 12 SGK toán 8 tập 1 ( Bài tập hằng đẳng thức đáng nhớ) – Chương 1: Phép nhân và chia đa thức.
- Bình phương của một tổng: (A + B )2 = A2 + 2AB + B2
- Bình phương của một hiệu: (A – B )2 = A2 – 2AB + B2
- Hiệu của hai bình phương: A2 – B2 = (A +B ) (A-B)
Giải bài tập về hằng đẳng thức trang 11,12 Toán 8 tập 1
Bài 19: Tính diện tích phần hình còn lại mà không cần đo.
Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu ? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không ?
Giải: Diện tích của miếng tôn là (a + b)2
Diện tích của miếng tôn phải cắt là (a – b)2.
Phần diện tích còn lại là (a + b)2 – (a – b)2.
Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.
———-
Bài 20: Nhận xét sự đúng, sai của kết quả sau:
x2 + 2xy + 4y2 = (x + 2y)2
Nhận xét sự đúng, sai:
Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2
= x2 + 4xy + 4y2
Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.
————-
Bài 21: Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) 9×2 – 6x + 1;
b) (2x + 3y)2 + 2 . (2x + 3y) + 1.
Hãy nêu một đề bài tương tự.
Giải: a) 9×2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2
Hoặc 9×2 – 6x + 1 = 1 – 6x + 9×2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự. Chẳng hạn:
1 + 2(x + 2y) + (x + 2y)2
4×2 – 12x + 9…
16×2 y4 – 8xy2 +1
———-
Bài 22 trang 12 Toán 8. Tính nhanh:
a) 1012; b) 1992; c) 47.53.
HD: a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201
b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601
c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491.
———
Bài 23 trang 12. Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab;
(a – b)2 = (a + b)2 – 4ab.
Áp dụng:
a) Tính (a – b)2 , biết a + b = 7 và a . b = 12.
b) Tính (a + b)2 , biết a – b = 20 và a . b = 3.
Giải: a) (a + b)2 = (a – b)2 + 4ab
– Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
– Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
———-
Bài 24: (trang 12 toán 8 tập 1). ính giá trị của biểu thức 49×2 – 70x + 25 trong mỗi trường hợp sau:
a) x = 5; b) x = 1/7.
HD: 49×2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2
a) Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900
b) Với x = 1/7: (7 . 1/7 – 5)2 = (1 – 5)2 = (-4)2 = 16
———-
Bài 25: Tính:
a) (a + b + c)2; b) (a + b – c)2;
c) (a – b – c)2
HD: a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 – 2(a + b)c + c2
= a2 + 2ab + b2 – 2ac – 2bc + c2
= a2 + b2 + c2 + 2ab – 2bc – 2ac.
c) (a – b -c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.